ARTICLE
29 July 2016

Investigative safety strategies to improve success in drug development

Franck Atienzar1* Annie Delaunois1 Frédéric Brouta2 Miranda Cornet2 Renaud Fleurance1 Helga Gerets1 Stéphanie Glineur1 Catrin Hasselgren3 Andrea Kiessling2 Andre Nogueira da Costa1 Marie-Luce Rosseels1 Karen Tilmant1 Jean-Pierre Valentin1
Show Less
1 Investigative Toxicology Group, UCB BioPharma SPRL, Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
2 Toxicology Group, UCB BioPharma SPRL, Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
3 PureInfo Discovery Inc., Albuquerque, USA
JMDS 2018 , 3(1), 2–29; https://doi.org/10.18063/jmds.v2i1.139
Submitted: 1 June 2016 | Accepted: 2 June 2016
© 2018 by the Author(s). Licensee Whioce Publishing, Singapore. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Understanding and reducing attrition rate remains a key challenge in drug development. Preclinical and clinical safety issues still represent about 40% of drug discontinuation, of which cardiac and liver toxicities are the leading reasons. Reducing attrition rate can be achieved by various means, starting with a comprehensive evaluation of the potential safety issues associated to the primary target followed by an evaluation of undesirable secondary targets. To address these risks, a risk mitigation plan should be built at very early development stages, using a panel of in silico, in vitro, and in vivo models. While most pharmaceutical companies have developed robust safety strategies to de-risk genotoxicity and cardiotoxicity issues, partly driven by regulatory requirements; safety issues affecting other organs or systems, such as the central nervous system, liver, kidney, or gastro-intestinal system are less commonly addressed during early drug development. This paper proposes some de-risking strategies that can be applied to these target organ systems, including the use of novel biomarkers that can be easily integrated in both preclinical and clinical studies. Experiments to understand the mechanisms’ underlying toxicity are also important. Two examples are provided to demonstrate how such mechanistic studies can impact drug development. Novel trends in investigative safety are reviewed, such as computational modeling, mitochondrial toxicity assessment, and imaging technologies. Ultimately, understanding the predictive value of non-clinical safety testing and its translatability to humans will enable to optimize assays in order to address the key objectives of the drug discovery process, i.e., hazard identification, risk assessment, and mitigation.

Keywords
safety attrition
drug development
target organ strategies
on and off target effects
hazard identification
risk assessment
mitigation plans
References

1. Report to the President on propelling innovation in drug discovery, development, and evaluation, 2012, President’s Council of Advisors on Science and Technology (PCAST), viewed April 17, 2016, <https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-fda-final.pdf>
2. Pammolli F, Magazzini L and Riccaboni M, 2011, The productivity crisis in pharmaceutical R&D. Nature Reviews Drug Discovery, vol.10(6): 428–438. http://dx.doi.org/10.1038/nrd3405
3. Booth B and Zemmel R, 2004, Prospects for productivity. Nature Reviews Drug Discovery, vol.3(5): 451–456. http://dx.doi.org/10.1038/nrd1384
4. Mervis J, 2005, Productivity counts — but the definition is key. Science, vol.309(5735): 726–727. http://dx.doi.org/10.1126/science.309.5735.726
5. David E, Tramontin T and Zemmel R, 2009, Pharmaceutical R&D: the road to positive returns. Nature Reviews Drug Discovery, vol.8(8): 609–610. http://dx.doi.org/10.1038/nrd2948
6. Cook D, Brown D, Alexander R, et al. 2014, Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nature Reviews Drug Discovery, vol.13: 419–431. http://dx.doi.org/10.1038/nrd4309
7. DiMasi J A, Hansen R W and Grabowski H G, 2003, The price of innovation: new estimates of drug development costs. Journal of Health Economics, vol.22(2): 151–185. http://dx.doi.org/10.1016/S0167-6296(02)00126-1
8. DiMasi J A, Feldman L, Seckler A, et al. 2010, Trends in risks associated with new drug development: success rates for investigational drugs. Clinical Pharmacology and Therapeutics, vol.87(3): 272–277. http://dx.doi.org/10.1038/clpt.2009.295
9. Basavaraj S and Betageri G V, 2014, Can formulation and drug delivery reduce attrition during drug discovery and development — review of feasibility, benefits and challenges. Acta Pharmaceutica Sinica B, vol.4(1): 3–17. http://dx.doi.org/10.1016/j.apsb.2013.12.003
10. Bakhtiar R, 2008, Biomarkers in drug discovery and development. Journal of Pharmacology and Toxicological Methods, vol.57(2): 85–91. http://dx.doi.org/10.1016/j.vascn.2007.10.002
11. Moreno L and Pearson A D, 2013, How can attrition rates be reduced in cancer drug discovery? Expert Opinion in Drug Discovery, vol.8(4): 363–368. http://dx.doi.org/10.1517/17460441.2013.768984
12. Kola I and Landis J, 2004, Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, vol.3(8): 711–715. http://dx.doi.org/10.1038/nrd1470
13. Valentin J P, Keisu M and Hammond T G, 2009, Predicting human adverse drug reactions from nonclinical safety studies, in Clinical Trials Handbook, Gad S C (ed), John Wiley & Sons, Inc., Hoboken, NJ, USA, 87–113.
14. Stummann T C, Beilmann M, Duker G, et al. 2009, Report and recommendations of the workshop of the European Centre for the validation of alternative methods for drug-induced cardiotoxicity. Cardiovascular Toxicology, vol.9(3): 107–125. http://dx.doi.org/10.1007/s12012-009-9045-3
15. Laverty H G, Benson C, Cartwright E J, et al. 2011, How can we improve our understanding of cardiovascular safety liabilities to develop medicines? British Journal of Pharmacology, vol.163(4): 675–693. http://dx.doi.org/10.1111/j.1476-5381.2011.01255.x
16. Valentin J P, Kenna J G, Lainée P, et al. 2012, A literature-based analysis of cardiovascular adverse events impacting on drug development. Journal of Pharmacology and Toxicological Methods, vol.66(2): 173. http://dx.doi.org/10.1016/j.vascn.2012.08.050
17. Tan D S, Thomas G V, Garrett M D, et al. 2009, Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer Journal, vol.15(5): 406–420. http://dx.doi.org/10.1097/PPO.0b013e3181bd0445
18. Berger S I and Iyengar R, 2011, Role of systems pharmacology in understanding drug adverse events. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.3(2): 129–135. http://dx.doi.org/10.1002/wsbm.114
19. Stark K L, Gross C, Richardson-Jones J, et al. 2007, A novel conditional knockout strategy applied to serotonin receptors, in Conditional Mutagenesis: An Approach to Disease Models, Volume 178: Handbook of Experimental Pharmacology, Feil R and Metzger D (eds), Springer-Verlag Berlin Heidelberg, Berlin, Germany, 347–363. http://dx.doi.org/10.1007/978-3-540-35109-2_14
20. Bowes J, Rolf M G, Valentin J P, et al. 2006, Pharmacological and pharmaceutical profiling: new trends, in The Process of New Drug Discovery and Development, 2nd edn, Smith C G and O’Donnell J T (eds), Informa Healthcare, New York, 103–134.
21. Bowes J, Brown A J, Hamon J, et al. 2012, Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nature Reviews Drug Discovery, vol.11: 909–922. http://dx.doi.org/10.1038/nrd3845
22. ICH S7B: The nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals, n.d., viewed April 16, 2016, <http://www.emea.eu.int/pdfs/human/ich/042302en.pdf>
23. ICH S7A: Safety pharmacology studies for human pharmaceuticals, n.d., viewed April 28, 2016, <http://www.emea.eu.int/pdfs/human/ich/053900en.pdf>
24. Assessment of abuse potential of drugs (draft guidance), n.d., viewed April 30, 2016, <http://www.fda.gov/downloads/drugs/guidancecomplian ceregulatoryinformation/guidances/ucm198650.pdf> 
25. Papoian T, Chiu H J, Elayan I, et al. 2015, Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nature Reviews Drug Discovery, vol.14: 294–296. http://dx.doi.org/10.1038/nrd3845-c1
26. Cavero I and Guillon J M, 2014, Safety pharmacology assessment of drugs with biased 5-HT2B receptor agonism mediating cardiac valvulopathy. Journal of Pharmacological and Toxicological Methods, vol.69(2): 150–161. http://dx.doi.org/10.1016/j.vascn.2013.12.004
27. Muller P Y and Milton M N, 2012, The determination and interpretation of the therapeutic index in drug development. Nature Reviews Drug Discovery, vol.11: 751–761. http://dx.doi.org/10.1038/nrd3801
28. Wu P, Nielsen T E and Clausen M H, 2016, Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today, vol.21(1): 5–10. http://dx.doi.org/10.1016/j.drudis.2015.07.008
29. Escobar P A, Kemper R A, Tarca J, et al. 2013, Bacterial mutagenicity screening in the pharmaceutical industry. Mutation Research, vol.752(2): 99–118. http://dx.doi.org/10.1016/j.mrrev.2012.12.002
30. Hastwell P W, Webster T W, Tate M, et al. 2009, Analysis of 75 marketed pharmaceuticals using the GADD45a-GFP ‘GreenScreen HC’ genotoxicity assay. Mutagenesis, vol.24(5): 455–463. http://dx.doi.org/10.1093/mutage/gep029
31. Hughes C, Rabinowitz A, Tate M, et al. 2012, Development of a high-throughput Gaussia luciferase reporter assay for the activation of the GADD45a gene by mutagens, promutagens, clastogens, and aneugens. Journal of Biomolecular Screening, vol.17(10): 1302–1315. http://dx.doi.org/10.1177/1087057112453312
32. Shi J, Bezabhie R and Szkudlinska A, 2010, Further evaluation of a flow cytometric in vitro micronucleus assay in CHO-K1 cells: a reliable platform that detects micronuclei and discriminates apoptotic bodies. Mutagenesis, vol.25(1): 33–40. http://dx.doi.org/10.1093/mutage/gep040
33. Tilmant K, Gerets H H J, De Ron P, et al. 2013, The automated micronucleus assay for early assessment of genotoxicity in drug discovery. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.751(1): 1–11. http://dx.doi.org/10.1016/j.mrgentox.2012.10.011
34. Muster W, Breidenbach A, Fischer H, et al. 2008, Computational toxicology in drug development. Drug Discovery Today, vol.13(7–8): 303–310. http://dx.doi.org/10.1016/j.drudis.2007.12.007
35. Merlot C, 2010, Computational toxicology — a tool for early safety evaluation. Drug Discovery Today, vol.15(1–2): 6–22. http://dx.doi.org/10.1016/j.drudis.2009.09.010
36. Valerio L G, 2009, In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology, vol.241(3): 356–370. http://dx.doi.org/10.1016/j.taap.2009.08.022
37. Stevens J L and Baker T K, 2009, The future of drug safety testing: expanding the view and narrowing the focus. Drug Discovery Today, vol.14(3–4): 162–167. http://dx.doi.org/10.1016/j.drudis.2008.11.009
38. Cavero I and Holzgrefe H, 2014, Comprehensive in vitro proarrhythmia assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opinion Drug Safety, vol.13(6): 745–758. http://dx.doi.org/10.1517/14740338.2014.915311
39. Sager P T, Gintant G, Turner J R, et al. 2014, Rechanneling the cardiac proarrhythmia safety paradigm: meeting report from the Cardiac Safety Research Consortium. The American Heart Journal, vol.167(3): 292–300. http://dx.doi.org/10.1016/j.ahj.2013.11.004
40. Gintant G, Sager P T and Stockbridge N, 2016, Evolution of strategies to improve preclinical cardiac safety testing. Nature Reviews Drug Discovery, vol.15: 457–471. http://dx.doi.org/10.1038/nrd.2015.34
41. Rodriguez B, Carusi A, Abi-Gerges N, et al. 2015, Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop. Europace, euv320. http://dx.doi.org/10.1093/europace/euv320
42. Morissette P, Nishida M, Trepakova E, et al. 2013 The anesthetized guinea pig: an effective early cardiovascular de-risking and lead optimization model. Journal of Pharmacological and Toxicological Methods, vol.68(1): 137–149. http://dx.doi.org/10.1016/j.vascn.2013.04.010
43. Redfern W S, Ewart E, Lainée P, et al. 2013, Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicology Research, vol.2(4): 209–234. http://dx.doi.org/10.1039/c3tx20093k
44. Pointon A, Abi-Gerges N, Cross M J, et al. 2013, Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicological Sciences, vol.132(2): 317–326. http://dx.doi.org/10.1093/toxsci/kft005
45. Clements M and Thomas N, 2014, High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicological Sciences, vol.140(2): 445–461. http://dx.doi.org/10.1093/toxsci/kfu084
46. Reagan W J, 2010, Troponin as a biomarker of cardiac toxicity: past, present, and future. Toxicologic Pathology, vol.38(7): 1134–1137. http://dx.doi.org/10.1177/0192623310382438
47. Glineur S F, De Ron P, Hanon E, et al. 2016, Paving the route to plasma miR-208a-3p as an acute cardiac injury biomarker: preclinical rat data supports its use in drug safety assessment. Toxicological Sciences, vol.149(1): 89–97. http://dx.doi.org/10.1093/toxsci/kfv222
48. Karakikes I, Chaanine A H, Kang S, et al. 2013, Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. Journal of the American Heart Association, vol.2(2): e000078. http://dx.doi.org/10.1161/JAHA.113.000078
49. Lee D S, Chen J H, Lundy D J, et al. 2015, Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes. Cell Reports, vol.12(12): 1960–1967. http://dx.doi.org/10.1016/j.celrep.2015.08.042
50. Kuppusamy K T, Jones D C, Sperber H, et al. 2015, Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proceedings of the National Academy of Sciences USA, vol.112(21): E2785–E2794. http://dx.doi.org/10.1073/pnas.1424042112
51. Olson H, Betton G, Robinson D, et al. 2000, Concordance of the toxicity of pharmaceuticals in humans and in animals. Regulatory Toxicology and Pharmacology, vol.32(1): 56–67. http://dx.doi.org/10.1006/rtph.2000.1399
52. Greaves P, Williams A and Eve M, 2004, First dose of potential new medicines to humans: how animals help. Nature Reviews Drug Discovery, vol.3: 226–236. http://dx.doi.org/10.1038/nrd1329
53. Force T and Kerkelä R, 2008, Cardiotoxicity of the new cancer therapeutics — mechanisms of, and approaches to, the problem. Drug Discovery Today, vol.13(17–18): 778–784. http://dx.doi.org/10.1016/j.drudis.2008.05.011
54. Patyna S, Arrigoni C, Terron A, et al. 2008, Nonclinical safety evaluation of sunitinib: a potent inhibitor of VEGF, PDGF, KIT, FLT3, and RET receptors. Toxicologic Pathology, vol.36(7): 905–916. http://dx.doi.org/10.1177/0192623308326151
55. Leong X F, Ng C Y and Jaarin K, 2015, Animal models in cardiovascular research: hypertension and atherosclerosis. BioMed Research International, vol.2015(2015): 528757. http://dx.doi.org/10.1155/2015/528757
56. Authier S, Arezzo J, Delatte M S, et al. 2016, Safety pharmacology investigations on the nervous system: an industry survey. Journal of Pharmacological and Toxicological Methods. http://dx.doi.org/10.1016/j.vascn.2016.06.001
57. Chikhale E G, Ng K-Y, Burton P S, et al. 1994, Hydrogen bonding potential as a determinant of the in vitro and in situ blood–brain barrier permeability of peptides. Pharmaceutical Research, vol.11(3): 412–419. http://dx.doi.org/10.1023/A:1018969222130
58. Deo A, Theil P and Nicolas J M, 2013, Confounding parameters in preclinical assessment of blood-brain-barrier permeation: an overview with emphasis on species differences and effect of disease state. Molecular Pharmaceutics, vol.10(5): 1581–1595. http://dx.doi.org/10.1021/mp300570z
59. Nicolas J M, 2015, Species differences and impact of disease state on BBB, in Blood-Brain Barrier in Drug Discovery: Optimizing Brain Exposure of CNS Drugs and Minimizing Brain Side Effects for Peripheral Drugs, Di L, Kerns H E (eds), John Wiley & Sons, New Jersey, 66–93. http://dx.doi.org/10.1002/9781118788523.ch4
60. Easter A, Bell M E, Damewood Jr J R, et al. 2009, Approaches to seizure risk assessment in preclinical drug discovery. Drug Discovery Today, vol.14(17–18): 876–884. http://dx.doi.org/10.1016/j.drudis.2009.06.003
61. Bassett L, Troncy E, Pouliot M, et al. 2014, Telemetry video-electroencephalography (EEG) in rats, dogs and non-human primates: methods in follow-up safety pharmacology seizure liability assessments. Journal of Pharmacological and Toxicological Methods, vol.70(3): 230–240. http://dx.doi.org/10.1016/j.vascn.2014.07.005
62. Metea M, Litwak M and Arezzo J, 2015, Assessment of seizure risk in pre-clinical studies: strengths and limitations of the electroencephalogram (EEG). Journal of Pharmacology and Toxicology Methods, vol.75: 135–142. http://dx.doi.org/10.1016/j.vascn.2015.04.001
63. Muthas D, Boyer S and Hasselgren C, 2013, A critical assessment of modeling safety-related drug attrition. Medicinal Chemistry Communications, vol.4: 1058–1065. http://dx.doi.org/10.1039/c3md00072a
64. Arezzo J C, Litwak M S and Zotova E G, 2011, Correlation and dissociation of electrophysiology and histopathology in the assessment of toxic neuropathy. Toxicologic Pathology, vol.39(1): 46–51. http://dx.doi.org/10.1177/0192623310390231
65. Fix A S and Garman R H, 2000, Practical aspects of neuropathology: a technical guide for working with the nervous system. Toxicologic Pathology, vol.28(1): 122–131. http://dx.doi.org/10.1177/019262330002800115
66. Garman R H, 2011, Histology of the central nervous system. Toxicologic Pathology, vol.39(1): 22–35. http://dx.doi.org/10.1177/0192623310389621
67. Kofler J and Wiley C A, 2011, Microglia: key innate immune cells of the brain. Toxicologic Pathology, vol.39(1): 103–114. http://dx.doi.org/10.1177/0192623310387619
68. Garman R H, 2003, Evaluation of large-sized brains for neurotoxic endpoints. Toxicologic Pathology, vol.31(1): 32–43. http://dx.doi.org/10.1080/01926230390174913
69. Bolon B, Bradley A, Butt M, et al. 2011, Compilation of international regulatory guidance documents for neuropathology assessment during nonclinical general toxicity and specialized neurotoxicity studies. Toxicologic Pathology, vol.39(1): 92–96. http://dx.doi.org/10.1177/0192623310385145
70. Switzer III R C, Lowry-Franssen C and Benkovic S A, 2011, Recommended neuroanatomical sampling practices for comprehensive brain evaluation in nonclinical safety studies. Toxicologic Pathology, vol.39(1): 73–84. http://dx.doi.org/10.1177/0192623310397557
71. Mondello S, Gabrielli A, Catani S, et al. 2012, Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Injury, vol.26(13–14): 1629–1635. http://dx.doi.org/10.3109/02699052.2012.700083
72. Hanig J, Paule M G, Ramu J, et al. 2014, The use of MRI to assist the section selections for classical pathology assessment of neurotoxicity. Regulatory Toxicology and Pharmacology, vol.70(3): 641–647. http://dx.doi.org/10.1016/j.yrtph.2014.09.010
73. Roberts R A, Aschner M, Calligaro D, et al. 2015, Translational biomarkers of neurotoxicity: a Health and Environmental Sciences Institute perspective on the way forward. Toxicological Sciences, vol.148(2): 332–340. http://dx.doi.org/10.1093/toxsci/kfv188
74. Ernst F R and Grizzle A J 2001, Drug-related morbidity and mortality: updating the cost-of-illness model. Journal of the American Pharmaceutical Association, vol.41(2): 192–199. http://dx.doi.org/10.1016/S1042-0991(01)00200-9
75. Zhou Y, Yang L, Liao Z, et al. 2013, Epidemiology of drug-induced liver injury in China: systematic analysis of the Chinese literature including 21,789 patients. European Journal of Gastroenterology & Hepatology, vol.25(7): 825–829. http://dx.doi.org/10.1097/MEG.0b013e32835f6889
76. Pessayre L D and Biour M, 1999, Drug-induced liver injury, in Oxford Textbook of Clinical Hepatology, 2nd edn, Bircher J, Benhamou J P, McIntyre N, et al. (eds), Oxford, Oxford University Press, 1261–1315.
77. Park B K, Kitteringham N R, Powell H, et al. 2000, Advances in molecular toxicology towards understanding idiosyncratic drug toxicity. Toxicology, vol.153(1–3): 39–60. http://dx.doi.org/10.1016/S0300-483X(00)00303-6
78. Roth R A, Luyendyk J P, Maddox J F, et al. 2003, Inflammation and drug idiosyncrasy — is there a connection? The Journal of Pharmacology and Experimental Therapeutics, vol.307(1): 1–8. http://dx.doi.org/10.1124/jpet.102.041624
79. US Department of Health and Human Services — Food and Drug Administration, n.d., Guidance for industry. Drug-induced liver injury: premarketing clinical evaluation, viewed February 15, 2016, <http://www.fda.gov/downloads/Drugs/.../Guidances/UCM174090.pdf. Accessed February 2016>
80. Walker R M and McElligott T F, 1981, Furosemide-induced hepatotoxicity. Journal of Pathology, vol.135(4): 301–314. http://dx.doi.org/10.1002/path.1711350407
81. Lee W M, 2003, Drug-induced hepatotoxicity. The New England Journal of Medicine, vol.349(5): 474–485. http://dx.doi.org/10.1056/NEJMra021844
82. Godoy P, Hewitt N J, Albrecht U, et al. 2013, Recent advances in 2D and 3D liver cell culture systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, vol.87(8): 1315–1530. http://dx.doi.org/10.1007/s00204-013-1078-5
83. Antoine D J, Williams D P and Park B K, 2008, Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opinion on Drug Metabolism & Toxicology, vol.4(11): 1415–1427. http://dx.doi.org/10.1517/17425255.4.11.1415
84. Usui T, Mise M, Hashizume T, et al. 2009, Evaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins. Drug Metabolism and Disposition, vol.37(12): 2383–2392. http://dx.doi.org/10.1124/dmd.109.028860
85. Obach R S, Kalgutkar A S, Soglia J R, et al. 2008, Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from non-hepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chemical Research in Toxicology, vol.21(9): 1814–1822. http://dx.doi.org/10.1021/tx800161s
86. Park B K, Boobis A, Clarke S, et al. 2011, Managing the challenge of chemically reactive metabolites in drug development. Nature Reviews Drug Discovery, vol.10(4): 292–306. http://dx.doi.org/10.1038/nrd3408
87. Williams D P, 2006, Toxicophores: investigations in drug safety. Toxicology, vol.226(1): 1–11. http://dx.doi.org/10.1016/j.tox.2006.05.041
88. Ainscow E K, Pilling J E, Brown N M, et al. 2008, Investigations into the liver effects of ximelagatran using high content screening of primary human hepatocyte cultures. Expert Opinion on Drug Safety, vol.7(4): 351–365. http://dx.doi.org/10.1517/14740338.7.4.351
89. Gerets H H, Tilmant K, Gerin B, et al. 2012, Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biology and Toxicology, vol.28(2): 69–87. http://dx.doi.org/10.1007/s10565-011-9208-4
90. Persson M, Løye A F, Mow T, et al. 2013, A high content screening assay to predict human drug-induced liver injury during drug discovery. Journal of Pharmacological and Toxicological Methods, vol.68(3): 302–313. http://dx.doi.org/10.1016/j.vascn.2013.08.001
91. Atienzar F A, Blomme E A, Chen M, et al., 2016, Key challenges and opportunities associated with the use of in vitro models to detect human DILI: integrated risk assessment and mitigation plans. Accepted June 22, 2016.
92. Thompson R A, Isin E M, Li Y, et al. 2012, In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chemical Research in Toxicology, vol.25(8): 1616–1632. http://dx.doi.org/10.1021/tx300091x
93. Chen M, Tung C W, Shi Q, et al. 2014, A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Archives of Toxicology, vol.88(7): 1439–1449. http://dx.doi.org/10.1007/s00204-014-1276-9
94. Shah F, Leung L, Barton H A, et al. 2015, Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicological Sciences, vol.147(2): 500–514. http://dx.doi.org/10.1093/toxsci/kfv152
95. Maschmeyer I, Lorenz A K, Schimek K, et al. 2015, A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip, vol.15(12): 2688–2699. http://dx.doi.org/10.1039/C5LC00392J
96. Atienzar F A, Novik E I, Gerets H H, et al. 2014, Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicology and Applied Pharmacology, vol.275(1): 44–61. http://dx.doi.org/10.1016/j.taap.2013.11.022
97. Przybylak K R and Cronin M T, 2012, In silico models for drug-induced liver injury — current status. Expert Opinion in Drug Metabolism and Toxicology, vol.8(2): 201–217. http://dx.doi.org/10.1517/17425255.2012.648613
98. Zhang M, Chen M and Tong W, 2012, Is toxicogenomics a more reliable and sensitive biomarker than conventional indicators from rats to predict drug-induced liver injury in humans? Chemical Research in Toxicology, vol.25(1): 122–129. http://dx.doi.org/10.1021/tx200320e
99. Low Y, Uehara T, Minowa Y, et al. 2011, Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chemical Research in Toxicology, vol.24(8): 1251–1262. http://dx.doi.org/10.1021/tx200148a
100. Regev A, 2014, Drug-induced liver injury and drug development: industry perspective. Seminars in Liver Disease, vol.34(2): 227–239. http://dx.doi.org/10.1055/s-0034-1375962
101. Wang K, Zhang S, Marzolf B, et al. 2009, Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences USA, vol.106(11): 4402–4407. http://dx.doi.org/10.1073/pnas.0813371106
102. Bala S, Petrasek J, Mundkur S, et al. 2012, Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology, vol.56(5): 1946–1957. http://dx.doi.org/10.1002/hep.25873
103. McGill M R and Jaeschke H, 2014, Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opinion on Drug Metabolism & Toxicology, vol.10(7): 1005–1017. http://dx.doi.org/10.1517/17425255.2014.920823
104. Amacher D E, Schomaker S J and Aubrecht J, 2013, Development of blood biomarkers for drug-induced liver injury: an evaluation of their potential for risk assessment and diagnostics. Molecular Diagnosis & Therapy, vol.17(6): 343–354. http://dx.doi.org/10.1007/s40291-013-0049-0
105. Al-Saffar A, Da Costa A N, Delaunois A, et al. 2015, Gastrointestinal safety pharmacology in drug discovery and development, in Principles of Safety Pharmacology, Handbook of Experimental Pharmacology, Pugsley M K and Curtis M J (eds), Springer Berlin Heidelberg, Berlin, 291–321. http://dx.doi.org/10.1007/978-3-662-46943-9_12
106. Daniel E E, Kwan C Y and Janssen L, 2001, Pharmacological techniques for the in vitro study of intestinal smooth muscles. Journal of Pharmacological and Toxicological Methods, vol.45(2): 141–158. http://dx.doi.org/10.1016/S1056-8719(01)00131-9
107. Mahar K M, Portelli S, Coatney R, et al. 2012, Gastric pH and gastric residence time in fasted and fed conscious beagle dogs using the Bravo® pH system. The Journal of Pharmaceutical Sciences, vol.101(7): 2439–2448. http://dx.doi.org/10.1002/jps.23159
108. Boillat C S, Gaschen F P, Gaschen L, et al. 2010, Variability associated with repeated measurements of gastrointestinal tract motility in dogs obtained by use of a wireless motility capsule system and scintigraphy. American Journal of Veterinary Research, vol.71(8): 903–908. http://dx.doi.org/10.2460/ajvr.71.8.903
109. Goineau S, Rompion S, Guillaume P, et al. 2013, Using telemetry to automate the detection of emesis in the ferret: new vistas for delayed emesis assessment. Journal of Pharmacological and Toxicological Methods, vol.68(1): 160–165. http://dx.doi.org/10.1016/j.vascn.2013.03.010
110. Lesniewska V, Rowland I, Laerke H N, et al. 2006, Relationship between dietary-induced changes in intestinal commensal microflora and duodenojejunal myoelectric activity monitored by radiotelemetry in the rat. Experimental Physiology, vol.91(1): 229–237. http://dx.doi.org/10.1113/expphysiol.2005.031708
111. Benjamin A, Da Costa A., Delaunois A, et al. 2015, Renal safety pharmacology in drug discovery and development, in Principles of Safety Pharmacology, Handbook of Experimental Pharmacology, Pugsley M K and Curtis M J (eds), Springer Berlin Heidelberg, Berlin, 323–352. http://dx.doi.org/10.1007/978-3-662-46943-9_13
112. Dieterle F, Perentes E, Cordier A, et al. 2010, Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature Biotechnology, vol.28: 463–469. http://dx.doi.org/10.1038/nbt.1622
113. Dieterle F, Sistare F, Goodsaid F, et al. 2010, Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nature Biotechnology, vol.28: 455–462. http://dx.doi.org/10.1038/nbt.1625
114. Vickers A E M, Rose K, Fisher R, et al. 2004, Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicologic Pathology, vol.32(5): 577–590. http://dx.doi.org/10.1080/01926230490508821
115. Husted S, Emanuelsson H, Heptinstall S, et al. 2006, Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. European Heart Journal, vol. 27(9): 1038–1047. http://dx.doi.org/10.1093/eurheartj/ehi754
116. Van Giezen J J, Nilsson L, Berntsson P, et al. 2009, Ticagrelor binds to human P2Y12 independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. Journal of Thrombosis and Haemostasis, vol.7(9): 1556–1565. http://dx.doi.org/10.1111/j.1538-7836.2009.03527.x
117. Wallentin L, Becker R C, Budaj A, et al. 2009, Ticagrelor versus clopidogrel in patients with acute coronary syndromes. The New England Journal of Medicine, vol.361(11): 1045–1057. http://dx.doi.org/10.1056/NEJMoa0904327
118. Cannon C P, Husted S, Harrington R A, et al. 2007, Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. Journal of the American College of Cardiology, vol.50(19): 1844–1851. http://dx.doi.org/10.1016/j.jacc.2007.07.053
119. Storey R F, Bliden K P, Patil S B, et al. 2010, Incidence of dyspnea and assessment of cardiac and pulmonary function in patients with stable coronary artery disease receiving ticagrelor, clopidogrel, or placebo in the ONSET/OFFSET study. Journal of the American College of Cardiology, vol.56(3): 185–193. http://dx.doi.org/10.1016/j.jacc.2010.01.062
120. Nylander S, Femia EA, Scavone M, et al. 2013, Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. Journal of Thrombosis and Haemostasis, vol.11(10): 1867–1876. http://dx.doi.org/10.1111/jth.12360
121. Van Giezen J J, Sidaway J, Glaves P, et al. 2012, Ticagrelor inhibits adenosine uptake and enhances adenosine-mediated hyperemia responses in a canine model. Journal of Cardiovascular Pharmacology and Therapeutics, vol.17(2): 164–172. http://dx.doi.org/10.1177/1074248411410883
122. Wittfeldt A, Emanuelsson H, Brandrup-Wognsen G, et al. 2013, Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. Journal of the American College of Cardiology, vol.61(7): 723–727. http://dx.doi.org/10.1016/j.jacc.2012.11.032
123. Armstrong D, Summers C, Ewart L, et al. 2014, Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. Journal of Cardiovascular Pharmacology and Therapeutics, vol.19(2): 209–219. http://dx.doi.org/10.1177/1074248413511693
124. Nicolas J M, Chanteux H, Mancel V, et al. 2014, N-alkylprotoporphyrin formation and hepatic porphyria in dogs after administration of a new antiepileptic drug candidate: mechanism and species specificity. Toxicological Sciences, vol.141(2): 353–364. http://dx.doi.org/10.1093/toxsci/kfu131
125. Balwani M and Desnick R J, 2012, The porphyrias: advances in diagnosis and treatment. Blood, vol.120(23): 4496–4504. http://dx.doi.org/10.1182/blood-2012-05-423186
126. Lavigne J A, Nakatsu K and Marks G S, 2002, Identification of human hepatic cytochrome P450 sources of N-alkylprotoporphyrin IX after interaction with porphyrogenic xenobiotics, implications for detection of xenobiotic-induced porphyria in humans. Drug Metabolism and Disposition, vol.30(7): 788–794. http://dx.doi.org/10.1124/dmd.30.7.788
127. McNamee J P, Jurima-Romet M, Kobus S M, et al. 1997, cDNA-expressed human cytochrome P450 isozymes. Inactivation by porphyrinogenic xenobiotics. Drug Metabolism and Disposition, vol.25(4): 437–441. http://dx.doi.org/10.1124/dmd.25.4.437
128. Bailey J, Thew M and Balls M, 2015, Predicting human drug toxicity and safety via animal tests: can any one species predict drug toxicity in any other, and do monkeys help? Alternatives to Laboratory Animals, vol.43(6): 393–403. http://dx.doi.org/10.1177/0261192915590218
129. Ewart L, Aylott M, Deurinck M, et al. 2014, The concordance between nonclinical and phase I clinical cardiovascular assessment from a cross-company data sharing initiative. Toxicological Sciences, vol.142(2): 427–435. http://dx.doi.org/10.1093/toxsci/kfu198
130. Leist M and Hartung T, 2013, Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Archives of Toxicology, vol.87(4): 563–567. http://dx.doi.org/10.1007%2Fs00204-013-1038-0
131. Khatri P, Sirota M and Butte A J, 2012, Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Computational Biology, vol.8: e1002375. http://dx.doi.org/10.1371/journal.pcbi.1002375
132. Krejsa C M, Horvath D, Rogalski S L, et al. 2003, Predicting ADME properties and side effects: the BioPrint approach. Current Opinion in Drug Discovery Development, vol.6: 470–480. http://dx.doi.org/10.1016/S1367-5931(03)00042-7
133. Fliri A F, Loging W T, Thadeio P F, et al. 2005, Biological spectra analysis: linking biological activity profiles to molecular structure. Proceedings of the National Academy of Sciences of the USA, vol.102: 261–266. http://dx.doi.org/10.1073/pnas.0407790101
134. Bender A, Scheiber J, Glick M, et al. 2007, Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem, vol.2(6): 861–873. http://dx.doi.org/10.1002/cmdc.200700026
135. Keiser M J, Roth B L, Armbruster B N, et al. 2007, Relating protein pharmacology by ligand chemistry. Nature Biotechnology, vol.25: 197–206. http://dx.doi.org/10.1038/nbt1284
136. Garcia-Serna R and Mestres J, 2010, Anticipating drug side effects by comparative pharmacology. Expert Opinion on Drug Metabolism and Toxicology, vol.6(10): 1253–1263. http://dx.doi.org/10.1517/17425255.2010.509343
137. Garcia-Serna R, Vidal D, Remez N, et al. 2015, Large-scale predictive drug safety: from structural alerts to biological mechanisms. Chemical Research in Toxicology, vol.28(10): 1875–1887. http://dx.doi.org/10.1021/acs.chemrestox.5b00260
138. Wallace K B and Starkov A A, 2000, Mitochondrial targets of drug toxicity. Annual Review of Pharmacology and Toxicology, vol.40: 353–388. http://dx.doi.org/10.1146/annurev.pharmtox.40.1.353
139. Wallace K B, 2008, Mitochondrial off targets of drug therapy. Trends in Pharmacological Sciences, vol.29(7): 361–366. http://dx.doi.org/10.1016/j.tips.2008.04.001
140. Pereira C V, Moreira A C, Pereira S P, et al. 2009, Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety? Current Drug Safety, vol.4(1): 34–54. http://www.eurekaselect.com/68326/article
141. Labbe G, Pessayre D and Fromenty B, 2008, Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundamental & Clinical Pharmacology, vol.22(4): 335–353. http://dx.doi.org/10.1111/j.1472-8206.2008.00608.x
142. Porceddu M, Buron N, Roussel C, et al. 2012, Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicological Sciences, vol.129(2): 332–345. http://dx.doi.org/10.1093/toxsci/KFS197
143. Wallace K B, 2003, Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, vol.93(3): 105–115. http://dx.doi.org/10.1034/j.1600-0773.2003.930301.x
144. Finsterer J and Ohnsorge P, 2013, Influence of mitochondrion-toxic agents on the cardiovascular system. Regulatory Toxicology and Pharmacology, vol.67(3): 434–445. http://dx.doi.org/10.1016/j.yrtph.2013.09.002
145. Beeson C C, Beeson G C and Schnellmann R G, 2010, A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Analytical Biochemistry, vol.404(1): 75–81. http://dx.doi.org/10.1016/j.ab.2010.04.040
146. Dykens J A and Will Y (eds), 2008, Drug-induced Mitochondrial Dysfunction. New Jersey: John Wiley and Sons, Inc. http://dx.doi.org/10.1002/9780470372531
147. Honkoop P, Scholte H R, De Man R A, et al. 1997, Mitochondrial injury: lessons from the fialuridine trial. Drug Safety, vol.17(1): 1–7. http://dx.doi.org/10.2165/00002018-199717010-00001
148. Orlowski J P, 1999, Whatever happened to Reye’s syndrome? Did it ever really exist? Critical Care Medicine, vol.27(8): 1582–1587. http://dx.doi.org/10.1097/00003246-199908000-00032
149. Zhang J, Nuebel E, Wisidagama D R, et al. 2012, Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nature Protocols, vol.7(6): 1068–1085. http://dx.doi.org/10.1038/nprot.2012.048
150. Nelms M D, Mellor C L, Cronin M T, et al. 2015, Development of an in silico profiler for mitochondrial toxicity. Chemical Research in Toxicology, vol.28(10): 1891–1902. http://dx.doi.org/10.1021/acs.chemrestox.5b00275
151. Benard G and Rossignol R, 2008, Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxidants & Redox Signaling, vol.10(8): 1313–1342. http://dx.doi.org/10.1089/ars.2007.2000
152. Ferrick D A, Neilson A and Beeson C, 2008, Advances in measuring cellular bioenergetics using extracellular flux. Drug Discovery Today, vol.13(5–6): 268–274. http://dx.doi.org/10.1016/j.drudis.2007.12.008
153. Wills L P, Beeson G C, Trager R E, et al. 2013, High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury. Toxicology and Applied Pharmacology, vol.272(2): 490–502. http://dx.doi.org/10.1016/j.taap.2013.06.014
154. Nicholls D G, Darley-Usmar V M, Wu M, et al. 2010, Bioenergetic profile experiment using C2C12 myoblast cells. The Journal of Visualized Experiments, vol.46: e2511. http://dx.doi.org/10.3791/2511
155. Kola I, 2008, The state of innovation in drug development. Clinical Pharmacology and Therapeutics, vol.83(2): 227–230. http://dx.doi.org/10.1038/sj.clpt.6100479
156. Leurent C and Ehlers M D, 2015, Digital technologies for cognitive assessment to accelerate drug development in Alzheimer's disease. Clinical Pharmacology & Therapeutics, vol.98(5): 475–476. http://dx.doi.org/10.1002/cpt.212
157. Cobice D F, Goodwin R J A, Andren P E, et al. 2015, Future technology insight: mass spectrometry imaging as a tool in drug research and development. British Journal of Pharmacology, vol.172(13): 3266–3283. http://dx.doi.org/10.1111/bph.13135
158. Atienzar F A, Gerets H, Tilmant K, et al. 2013, Evaluation of impedance-based label-free technology as a tool for pharmacology and toxicology investigations. Biosensors, vol.3(1): 132–156. http://dx.doi.org/10.3390/bios3010132
159. Atienzar F A, Tilmant K, Gerets H H, et al. 2011, The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. Journal of Biomolecular Screening, vol.16(6): 575–587. http://dx.doi.org/10.1177/1087057111402825
160. Abassi Y A, Xi B, Zhang W, et al. 2009, Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chemistry and Biology, vol.16(7): 712–723. http://dx.doi.org/10.1016/j.chembiol.2009.05.011
161. Kirstein S L, Atienza J M, Xi B, et al. 2006, Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay and Drug Development Technologies, vol.4(5): 545–553. http://dx.doi.org/10.1089/adt.2006.4.545
162. Caplin J D, Granados N G, James M R, et al. 2015, Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Advanced Healthcare Materials, vol.4(10): 1426–1450. http://dx.doi.org/10.1002/adhm.201500040
163. Stucki A O, Stucki J D, Hall S R R, et al. 2015, A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab on a Chip, vol.15(5): 1302–1310. http://dx.doi.org/10.1039/C4LC01252F
164. Khetani S R and Bhatia S N, 2008, Microscale culture of human liver cells for drug development. Nature Biotechnology, vol.26(1): 120–126. http://dx.doi.org/10.1038/nbt1361
165. Khetani S R, Kanchagar C, Ukairo O, et al. 2013, Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicological Sciences, vol.132(1): 107–117. http://dx.doi.org/10.1093/toxsci/kfs326
166. Ukairo O, Kanchagar C, Moore A, et al. 2013, Long-term stability of primary rat hepatocytes in micropatterned cocultures. Journal of Biochemical and Molecular Toxicology, vol.27(3): 204–212. http://dx.doi.org/10.1002/jbt.21469
167. Itzhaki I, Maizels L, Huber I, et al. 2011, Modelling the long QT syndrome with induced pluripotent stem cells. Nature, vol.471: 225–229. http://dx.doi.org/10.1038/nature09747
168. Sun N, Yazawa M, Liu J, et al. 2012, Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, vol.4(130): 130–147. http://dx.doi.org/10.1126/scitranslmed.3003552
169. Lan F, Lee A S, Liang P, et al. 2013, Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, vol.12(1): 101–113. http://dx.doi.org/10.1016/j.stem.2012.10.010
170. Saumarez R C, Chojnowska L, Derksen R, et al. 2003, Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation. Circulation, vol.107: 2595–2600. http://dx.doi.org/10.1161/01.cir.0000068342.96569.a1
171. Liang P, Lan F, Lee A S, et al. 2013, Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, vol.127(16): 1677–1691. http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001883
172. Brennan F R, Morton L D, Spindeldreher S, et al. 2010, Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. Monoclonal Antibodies, vol.2(3): 233–255. http://dx.doi.org/10.4161/mabs.2.3.11782
173. Muller P Y, Milton M, Lloyd P, et al. 2009, The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Current Opinion in Biotechnology, vol.20(6): 722–729. http://dx.doi.org/10.1016/j.copbio.2009.10.013
174. Heyen J R, Rojko J, Evans M, et al. 2014, Characterization, biomarkers, and reversibility of a monoclonal antibody-induced immune complex disease in cynomolgus monkeys (Macaca fascicularis). Toxicologic Pathology, vol.42(4): 765–773. http://dx.doi.org/10.1177/0192623314522559
175. Hillebrecht A, Muster W, Brigo A, et al. 2011, Comparative evaluation of in silico systems for Ames test mutagenicity prediction: scope and limitations. Chemical Research in Toxicology, vol.24(6): 843–854. http://dx.doi.org/10.1021/tx2000398
176. Guo L, Coyle L, Abrams R M, et al. 2013, Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicological Sciences, vol.136(2): 581–594. http://dx.doi.org/10.1093/toxsci/kft205
177. Kirkland D, Aardema M, Henderson L, et al. 2005, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.584(1–2): 1–256. http://dx.doi.org/10.1016/j.mrgentox.2005.02.004
178. Winter M J, Redfern W S, Hayfield A J, et al. 2008, Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. Journal of Pharmacological and Toxicological Methods, vol.57(3): 176–187. http://dx.doi.org/10.1016/j.vascn.2008.01.004
179. Mulliner D, Schmidt F, Stolte M, et al. 2016, Computational models for human and animal hepatotoxicity with a global application scope. Chemical Research in Toxicology, vol.29(5): 757–767. http://dx.doi.org/10.1021/acs.chemrestox.5b00465
180. Beattie K A, Luscombe C, Williams G, et al. 2013, Evaluation of an in silico cardiac safety assay: using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. Journal of Pharmacological and Toxicological Methods, vol.68(1): 88–96. http://dx.doi.org/10.1016/j.vascn.2013.04.004
181. Wallis R M, 2010, Integrated risk assessment and predictive value to humans of non-clinical repolarization assays. British Journal of Pharmacology, vol.159(1): 115–121. http://dx.doi.org/10.1111/j.1476-5381.2009.00395.x
182. Harmer A R, Abi-Gerges N, Morton M J, et al. 2012, Validation of an in vitro contractility assay using canine ventricular myocytes. Toxicology and Applied Pharmacology, vol.260(2): 162–172. http://dx.doi.org/10.1016/j.taap.2012.02.007
183. Keating C, Martinez V, Ewart L, et al. 2010, The validation of an in vitro colonic motility assay as a biomarker for gastrointestinal adverse drug reactions. Toxicology and Applied Pharmacology, vol.245(3): 299–309. http://dx.doi.org/10.1016/j.taap.2010.03.014
184. Hornberg J J, Laursen M, Brenden N, et al. 2014, Exploratory toxicology as an integrated part of drug discovery. Part II: Screening strategies. Drug Discovery Today, vol.19(8): 1137–1144. http://dx.doi.org/10.1016/j.drudis.2013.12.009
185. Jennings P, 2015, The future of in vitro toxicology. Toxicology in Vitro, vol.29(6): 1217–1221. http://dx.doi.org/10.1016/j.tiv.2014.08.011

Conflict of interest
No conflict of interest was reported by the authors.
Share
Back to top