ARTICLE
1 April 2024

Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-Cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7

Da-Hye Kang1 Sang-Hyeon Yoo1 Ju-Eun Hong1 Ki-Jong Rhee1*
Show Less
1 Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus, Wonju 26493, Korea
© 2024 by the Author(s). Licensee Whioce Publishing, Singapore. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zincdependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Lastly, we reported that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may
also play a role in the carcinogenesis of tissues other than the colon.

Keywords
Enterotoxigenic Bacteroides fragilis
E-cadherin
Proteasome
Staurosporine
References

1. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the Human Intestinal Microbial Flora. Science, 2005, 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591
2. Pierce JV, Bernstein HD. Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis. PLoS One, 2016, 11: e0158171. https://doi.org/10.1371/journal.pone.0158171
3. Hwang S, Gwon SY, Kim MS, et al. Bacteroides fragilis Toxin Induces IL-8 Secretion in HT29/C1 Cells Through Disruption of E-Cadherin Junctions. Immune Netw, 2013, 13(5): 213–217. https://doi.org/10.4110/in.2013.13.5.213
4. Lee CG, Hwang S, Gwon SY, et al. Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines, 2022, 10(4): 827. https://doi.org/10.3390/biomedicines10040827
5. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides fragilis-Induced Colon Tumorigenesis. Proc Natl Acad Sci USA, 2011, 108(37): 15354–15359. https://doi.org/10.1073/pnas.1010203108
6. Allen J, Hao S, Sears CL, et al. Epigenetic Changes Induced by Bacteroides fragilis Toxin. Infect Immun, 2019, 87(6): e00447–e00418. https://doi.org/10.1128/IAI.00447-18
7. Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol, 2019, 10: 2598. http://doi.org/10.3389/fmicb.2019.02598
8. Koirala R, Priest AV, Yen CF, et al. Inside-Out Regulation of E-Cadherin Conformation and Adhesion. Proc Natl Acad Sci USA, 2021, 118(30): 1–12. http://doi.org/10.1073/pnas.2104090118
9. Troyanovsky SM. Adherens Junction: The Ensemble of Specialized Cadherin Clusters. Trends Cell Biol, 2022, 33(5): 374–387. http://doi.org/10.1016/j.tcb.2022.08.007
10. Na TY, Schecterson L, Mendonsa AM, et al. The Functional Activity of E-Cadherin Controls Tumor Cell Metastasis at Multiple Steps. Proc Natl Acad Sci USA, 2020, 117(11): 5931–5937. https://doi.org/10.1073/pnas.1918167117
11. Damsky CH, Richa J, Solter D, et al. Identification and Purification of a Cell Surface Glycoprotein Mediating Intercellular Adhesion in Embryonic and Adult Tissue. Cell, 1983, 34(2): 455–466. https://doi.org/10.1016/0092-8674(83)90379-3
12. Yoo CB, Yun SM, Jo C, et al. γ-Secretase-Dependent Cleavage of E-Cadherin by Staurosporine in Breast Cancer Cells. Cell Commun Adhes, 2012, 19(1): 11–16. https://doi.org/10.3109/15419061.2012.665969
13. Hugo HJ, Wafai R, Blick T, et al. Staurosporine Augments EGF-Mediated EMT in PMC42-LA Cells Through Actin Depolymerisation, Focal Contact Size Reduction and Snail1 Induction – A Model for Cross-Modulation. BMC Cancer, 2009, 9: 235. https://doi.org/10.1186/1471-2407-9-235
14. Wu S, Rhee KJ, Zhang M, et al. Bacteroides fragilis Toxin Stimulates Intestinal Epithelial Cell Shedding and Gamma-Secretase-Dependent E-Cadherin Cleavage. J Cell Sci, 2007, 120(11): 1944-1952. https://doi.org/10.1242/jcs.03455 Erratum in: J Cell Sci, 120(20): 3713.
15. Rios-Doria J, Day KC, Kuefer R, et al. The Role of Calpain in the Proteolytic Cleavage of E-Cadherin in Prostate and Mammary Epithelial Cells. J Biol Chem, 2003, 278(2): 1372–1379. https://doi.org/10.1074/jbc.M208772200
16. Grabowska MM, Day ML. Soluble E-Cadherin: More Than a Symptom of Disease. Front Biosci (Landmark Ed), 2012, 17(5): 1948–1964. https://doi.org/10.2741/4031
17. Bard JAM, Goodall EA, Greene ER, et al. Structure and Function of the 26S Proteasome. Annu Rev Biochem, 2018, 87: 697–724. https://doi.org/10.1146/annurev-biochem-062917-011931
18. Rousseau A, Bertolotti A. Regulation of Proteasome Assembly and Activity in Health and Disease. Nat Rev Mol Cell Biol, 2018, 19: 697–712. https://doi.org/10.1038/s41580-018-0040-z
19. Hitchcock AL, Auld K, Gygi SP, et al. A Subset of Membrane-Associated Proteins is Ubiquitinated in Response to Mutations in the Endoplasmic Reticulum Degradation Machinery. ProcNatl Acad Sci USA, 2003, 100(22): 12735–12740. https://doi.org/10.1073/pnas.2135500100
20. Asakura T, Yamaguchi N, Ohkawa K, et al. Proteasome Inhibitor-Resistant Cells Cause EMT-Induction Via Suppression of E-Cadherin by miR-200 and ZEB1. Int J Oncol, 2015, 46(5): 2251–2260. https://doi.org/10.3892/ijo.2015.2916
21. Yang JY, Zong CS, Xia W, et al. MDM2 Promotes Cell Motility and Invasiveness by Regulating E-Cadherin Degradation. Mol Cell Biol, 2006, 26(19): 7269–7282. https://doi.org/10.1128/MCB.00172-06
22. Kisselev AF, Callard A, Goldberg AL. Importance of the Different Proteolytic Sites of the Proteasome and the Efficacy of Inhibitors Varies with the Protein Substrate. J Biol Chem, 2006, 281(13): 8582–8590. https://doi.org/10.1074/jbc.M509043200
23. Kortuem KM, Stewart AK. Carfilzomib. Blood, 2013, 121(6): 893–897. https://doi.org/10.1182/blood-2012-10-459883
24. Quaglio AEV, Grillo TG, De Oliveira ECS, et al. Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World J Gastroenterol, 2022, 28(30): 4053–4060. https://doi.org/10.3748/wjg.v28.i30.4053
25. Wu S, Powell J, Mathioudakis N, et al. Bacteroides fragilis Enterotoxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 Through Mitogen-Activated Protein Kinases and a Tyrosine Kinase-Regulated Nuclear Factor-κB Pathway. Infect Immun, 2004, 72(10): 5832–5839. https://doi.org/10.1128/IAI.72.10.5832-5839.2004
26. Park CH, Eun CS, Han DS. Intestinal Microbiota, Chronic Inflammation, and Colorectal Cancer. Intest Res, 2018, 16(3): 338–345. https://doi.org/10.5217/ir.2018.16.3.338
27. Cao Y, Wang Z, Yan Y, et al. Enterotoxigenic Bacteroides fragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology, 2021, 161(5): 1552–1566. https://doi.org/10.1053/j.gastro.2021.08.003
28. Hieken TJ, Chen J, Hoskin TL, et al. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Sci Rep, 2016, 6: 30751. https://doi.org/10.1038/srep30751
29. Pickard JM, Zeng MY, Caruso R, et al. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol Rev, 2017, 279(1): 70–89. https://doi.org/10.1111/imr.12567
30. Parida S, Wu S, Siddharth S, et al. A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-catenin Axes. Cancer Discov, 2021, 11(5): 1138–1157. https://doi.org/10.1158/2159-8290.CD-20-0537
31. Lehembre F, Yilmaz M, Wicki A, et al. NCAM-Induced Focal Adhesion Assembly: A Functional Switch Upon Loss of E-Cadherin. EMBO J, 2008, 27(19): 2603–2615. https://doi.org/10.1038/emboj.2008.178
32. Pohl C, Dikic I. Cellular Quality Control by the Ubiquitin-Proteasome System and Autophagy. Science, 2019, 366(6467): 818–822. https://doi.org/10.1126/science.aax3769
33. Pei J, Wang G, Feng L, et al. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem, 2021, 64(7): 3493–3507. https://doi.org/10.1021/acs.jmedchem.0c01689
34. Steinhusen U, Weiske J, Badock V, et al. Cleavage and Shedding of E-Cadherin After Induction of Apoptosis. J Biol Chem, 2001, 276(7): 4972–4980. https://doi.org/10.1074/jbc.M006102200
35. Wu WJ, Hirsch DS. Mechanism of E-Cadherin Lysosomal Degradation. Nat Rev Cancer, 2009, 9: 143. https://doi.org/10.1038/nrc2521-c1
36. Oerlemans R, Franke NE, Assaraf YG, et al. Molecular Basis of Bortezomib Resistance: Proteasome Subunit Beta5 (PSMB5) Gene Mutation and Overexpression of PSMB5 Protein. Blood, 2008, 112(6): 2489–2499. https://doi.org/10.1182/blood-2007-08-104950
37. Wu S, Lim KC, Huang J, et al. Bacteroides fragilis Enterotoxin Cleaves the Zonula Adherens Protein, E-Cadherin. Proc Natl Acad Sci USA, 1998, 95(25): 14979–14984. https://doi.org/10.1073/pnas.95.25.14979
38. Heerboth S, Housman G, Leary M, et al. EMT and Tumor Metastasis. Clin Transl Med, 2015, 4(1): 1–13. https://doi.org/10.1186/s40169-015-0048-3

Conflict of interest
The authors declare no conflict of interest.
Share
Back to top