Volume 10,Issue 1
Fall 2025
This paper presents a case of an unhealed incision persisting for four years in a 59-year-old male farmer who underwent lumbar decompression and internal fixation surgery. Following initial treatment and discharge, the lower end of the surgical incision failed to heal, remaining open at approximately 2 centimeters. The incision site subsequently experienced recurrent rupture and exudation over four years, during which the patient did not receive consistent medical intervention. Eventually, the patient underwent debridement for soft tissue lesions, leading to satisfactory postoperative recovery. Early detection and proper management of patients at risk of poor incision healing can significantly improve healing outcomes and enhance patient quality of life.
1. Niederstätter IM, Schiefer JL, Fuchs PC. Surgical Strategies to Promote Cutaneous Healing. Med Sci (Basel). 2021;9(2):45. https://doi.org/10.3390/medsci9020045
2. Rossaint J, Margraf A, Zarbock A. Perioperative Inflammation. Anaesthesist. 2019;68(7):421–427. https://doi.org/10.1007/s00101-019-0596-9
3. Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne). 2020;11:386. https://doi.org/10.3389/fendo.2020.00386
4. Lin YA, Chu PY, Ma WL, et al. Enzyme-Digested Peptides Derived from Lates calcarifer Enhance Wound Healing after Surgical Incision in a Murine Model. Mar Drugs. 2021;19(3):154. https://doi.org/10.3390/md19030154
5. Singh D, Chopra K, Sabino J, et al. Practical Things You Should Know about Wound Healing and Vacuum-Assisted Closure Management. Plast Reconstr Surg. 2020;145(4):839e–854e. https://doi.org/10.1097/PRS.0000000000006652
6. Grada A, Phillips TJ. Nutrition and Cutaneous Wound Healing. Clin Dermatol. 2022;40(2):103–113. https://doi.org/10.1016/j.clindermatol.2021.10.002
7. Widodo A, Rahajoe PS, Astuti RT. TGF-β Expression and Wound Tensile Strength After Simple Interrupted Suturing and Zip Surgical Skin Closure (IN VIVO Study). Ann Med Surg (Lond). 2020;58:187–193. https://doi.org/10.1016/j.amsu.2020.08.009
8. Goto T, Sapio MR, Maric D, et al. Longitudinal Peripheral Tissue RNA-Seq Transcriptomic Profiling, Hyperalgesia, and Wound Healing in the Rat Plantar Surgical Incision Model. FASEB J. 2021;35(10):e21852. https://doi.org/10.1096/fj.202100347R
9. Zhou SC, Liang JW, Zhou HT, et al. Risk Factor Analysis for Perineal Incision Complications After Abdominoperineal Resection in Elderly Patients with Rectal Cancer. Zhonghua Zhong Liu Za Zhi. 2020;42(1):65–69. https://doi.org/10.3760/cma.j.issn.0253-3766.2020.01.010
10. Blair MJ, Jones JD, Woessner AE, et al. Skin Structure-Function Relationships and the Wound Healing Response to Intrinsic Aging. Adv Wound Care (New Rochelle). 2020;9(3):127–143. https://doi.org/10.1089/wound.2019.1021
11. Wang J, Xing H, Chang Z. Effects of Different Sponge Implantation Methods of Negative Pressure Wound Therapy on Wound Healing of Deep Surgical Site Infection After Spinal Surgery. PLoS One. 2023;18(9):e0291858. https://doi.org/10.1371/journal.pone.0291858
12. Gotlin MJ, Catalano W, Levine JP, et al. Wound Closure Following Intervention for Closed Orthopedic Trauma. Injury. 2022;53(2):313–322. https://doi.org/10.1016/j.injury.2021.11.062
13. Dalci K, Gumus S, Saritas AG, et al. Modified Techniques Versus Hadfield’s Procedure in Patients with Periductal Mastitis. BMC Surg. 2022;22(1):40. https://doi.org/10.1186/s12893-022-01496-0
14. Ibrahiem SMS. Concha-Type Microtia: New Surgical Incision. Aesthet Surg J. 2023;43(11):NP815–NP822. https://doi.org/10.1093/asj/sjad191
15. Sun J, Yang G, Yang C. Influence of Postoperative Hypoalbuminemia and Human Serum Albumin Supplementation on Incision Healing Following Total Knee Arthroplasty for Knee Osteoarthritis: A Retrospective Study. Sci Rep. 2024;14(1):17354. https://doi.org/10.1038/s41598-024-68482-9
16. Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, et al. Progress in Wound-Healing Products Based on Natural Compounds, Stem Cells, and MicroRNA-Based Biopolymers in the European, USA, and Asian Markets: Opportunities, Barriers, and Regulatory Issues. Polymers (Basel). 2024;16(9):1280. https://doi.org/10.3390/polym16091280
17. Krishnaswami V, Raju NS, Alagarsamy S, et al. Novel Nanocarriers for the Treatment of Wound Healing. Curr Pharm Des. 2020;26(36):4591–4600. https://doi.org/10.2174/1381612826666200701203432
18. Xi J, Li W, Li T, et al. Effects of Loose Combined Cutting Seton Surgery on Wound Healing and Pain in Patients with High Anal Fistula: A Meta-Analysis. Int Wound J. 2024;21(3):e14675. https://doi.org/10.1111/iwj.14675
19. Lin YH, Chen YC, Cheng KS, et al. Higher Periwound Temperature Associated with Wound Healing of Pressure Ulcers Detected by Infrared Thermography. J Clin Med. 2021;10(13):2883. https://doi.org/10.3390/jcm10132883
20. Gu Q, Liu Q, Wang X, Xia Y, Hu J. Clinical effects of Special Pressure Ulcer Intervention Combined with Gel Positioning Pad Intervention on Preventing Acute Stress Injury in Patients Undergoing Long-Term Lateral Position Spinal Surgery. Altern Ther Health Med. 2023;30(8):282–289
21. Gupta S, Srivastava A, Malhotra R, et al. Wound Assessment Using Bates Jensen Wound Assessment Tool in Acute Musculoskeletal Injury Following Low-Cost Wall-Mounted Negative-Pressure Wound Therapy Application. Indian J Orthop. 2023;57(6):948–956. https://doi.org/10.1007/s43465-023-00861-2
22. Chen C, Luo LB, Gao D, et al. Surgical Drainage of Lactational Breast Abscess with Ultrasound-Guided Encor Vacuum-Assisted Breast Biopsy System. Breast J. 2019;25(5):889–897. https://doi.org/10.1111/tbj.13350
23. Chen L, Zheng Q, Chen X, et al. Low-Frequency Ultrasound Enhances Vascular Endothelial Growth Factor Expression, Thereby Promoting the Wound Healing in Diabetic Rats. Exp Ther Med. 2019;18(5):4040–4048. https://doi.org/10.3892/etm.2019.8051
24. Ashikyan O, Wells J, Chhabra A. 3D MRI of the Hip Joint: Technical Considerations, Advantages, Applications, and Current Perspectives. Semin Musculoskelet Radiol. 2021;25(3):488–500. https://doi.org/10.1055/s-0041-1730910
25. Altahawi F, Pierce J, Aslan M, et al. 3D MRI of the Knee. Semin Musculoskelet Radiol. 2021;25(3):455–467. https://doi.org/10.1055/s-0041-1730400
26. Lansier A, Bourillon C, Cuénod CA, et al. CT-Based Diagnostic Algorithm to Identify Bowel and/or Mesenteric Injury in Patients with Blunt Abdominal Trauma. Eur Radiol. 2023;33(3):1918–1927. https://doi.org/10.1007/s00330-022-09200-9
27. Du Y, Han S, Zhou Y, et al. Severe Wound Infection by MRCNS Following Bilateral Inguinal Herniorrhaphy. BMC Infect Dis. 2023;23(1):85. https://doi.org/10.1186/s12879-023-08039-9
28. Siegel MJ, Bugenhagen SM, Sanchez A, et al. Comparison of Radiation Dose and Image Quality of Pediatric High-Resolution Chest CT Between Photon-Counting Detector CT and Energy-Integrated Detector CT: A Matched Study. AJR Am J Roentgenol. 2023;221(3):363–371. https://doi.org/10.2214/AJR.23.29077
29. Jiang Z, Zhang M, Li P, et al. Nanomaterial-Based CT Contrast Agents and Their Applications in Image-Guided Therapy. Theranostics. 2023;13(2):483–509. https://doi.org/10.7150/thno.79625
30. Shi S, Gong Y, Hu H, et al. Topical Dihydroartemisinin Improves Wound Healing in Diabetic Mice. J Plast Surg Hand Surg. 2023;58:26–32. https://doi.org/10.2340/jphs.v58.5775
31. Luo X, Cheng S, Zhang W, et al. Near-Infrared Fluorescence Probe for Indication of the Pathological Stages of Wound Healing Process and Its Clinical Application. ACS Sens. 2024;9(2):810–819. https://doi.org/10.1021/acssensors.3c02147
32. Yang S, Gu Z, Lu C, et al. Neutrophil Extracellular Traps Are Markers of Wound Healing Impairment in Patients with Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. Adv Wound Care (New Rochelle). 2020;9(1):16–27. https://doi.org/10.1089/wound.2019.0943
33. Peddibhotla S, Caples K, Mehta A, et al. Triazolothiadiazine Derivative Positively Modulates CXCR4 Signaling and Improves Diabetic Wound Healing. Biochem Pharmacol. 2023;216:115764. https://doi.org/10.1016/j.bcp.2023.115764
34. Li S, Renick P, Senkowsky J, et al. Diagnostics for Wound Infections. Adv Wound Care (New Rochelle). 2021;10(6):317–327. https://doi.org/10.1089/wound.2019.1103
35. Siu MC, Voisey J, Zang T, et al. MicroRNAs Involved in Human Skin Burns, Wound Healing and Scarring. Wound Repair Regen. 2023;31(4):439–453. https://doi.org/10.1111/wrr.13100
36. Yadav JP. Based on Clinical Research Matrix Metalloprotease (MMP) Inhibitors to Promote Diabetic Wound Healing. Horm Metab Res. 2023;55(11):752–757. https://doi.org/10.1055/a-2171-5879
37. Chen H, Wang J, Hart DA, et al. Complement Factor D as a Predictor of Achilles Tendon Healing and Long-Term Patient Outcomes. The FASEB Journal. 2022;36(6):e22365. https://doi.org/10.1096/fj.202200200RR
38. Mota FAR, Passos MLC, Santos JLM, et al. Comparative Analysis of Electrochemical and Optical Sensors for Detection of Chronic Wounds Biomarkers: A Review. Biosens Bioelectron. 2024;251:116095. https://doi.org/10.1016/j.bios.2024.116095
39. Yuan C, Zhou F, Xu Z, et al. Functionalized DNA Origami-Enabled Detection of Biomarkers. Chembiochem. 2024;25(13):e202400227. https://doi.org/10.1002/cbic.202400227
40. Montag C, Elhai JD, Dagum P. On Blurry Boundaries When Defining Digital Biomarkers: How Much Biology Needs to Be in a Digital Biomarker? Front Psychiatry. 2021;12:740292. https://doi.org/10.3389/fpsyt.2021.740292
41. Fang B. Introduction to this Special Issue: “Biomarker Discovery and Precision Medicine”. J Cancer Metastasis Treat. 2020;6:1. https://doi.org/10.20517/2394-4722.2019.42
42. Li J, Xu M, Peng J, et al. Novel Technologies in cfDNA Analysis and Potential Utility in Clinic. Chin J Cancer Res. 2021;33(6):708–718. https://doi.org/10.21147/j.issn.1000-9604.2021.06.07
43. Zhang W, Xie J, Zeng A. The Origin and Development of Interrupted Subcuticular Suture: An Important Technique for Achieving Optimum Wound Closure. Dermatol Surg. 2022;48(6):619–624. https://doi.org/10.1097/DSS.0000000000003437
44. Suthar P, Shah S, Waknis P, et al. Comparing Intra-Oral Wound Healing After Alveoloplasty Using Silk Sutures and N-Butyl-2-Cyanoacrylate. J Korean Assoc Oral Maxillofac Surg. 2020;46(1):28–35. https://doi.org/10.5125/jkaoms.2020.46.1.28
45. Bhardwaj H, Joshi R, Gupta A. Updated Scenario on Negative Pressure Wound Therapy. Int J Low Extrem Wounds. 2024:15347346241228788. https://doi.org/10.1177/15347346241228788
46. Marouf A, Mortada H, Khedr B, et al. Effectiveness and Safety of Immediate Application of Negative Pressure Wound Therapy in Head and Neck Free Flap Reconstruction: A Systematic Review. Br J Oral Maxillofac Surg. 2022;60(8):1005–1011. https://doi.org/10.1016/j.bjoms.2022.04.003
47. Barau Dejean JMC, Pean JTM, Ottesen TD, et al. Advantages of a New Low-Cost Negative Pressure Wound Therapy Using the “Turtle VAC”: A Case Series. JBJS Case Connect. 2021;11(2). https://doi.org/10.2106/JBJS.CC.20.00056
48. Orlov A, Gefen A. The Fluid Handling Performance of the Curea P1 Multipurpose Dressing Against Superabsorbent and Foam Dressing Technologies. Int Wound J. 2022;19(4):945–956. https://doi.org/10.1111/iwj.13774
49. Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics. 2022;15(1):42. https://doi.org/10.3390/pharmaceutics15010042
50. Xu Y, Chen H, Fang Y, et al. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater. 2022;11(16):e2200494. https://doi.org/10.1002/adhm.202200494
51. Zhao X, Zhou Y, Li J, et al. Opportunities and Challenges of Hydrogel Microspheres for Tendon-Bone Healing After Anterior Cruciate Ligament Reconstruction. J Biomed Mater Res B Appl Biomater. 2022;110(2):289–301. https://doi.org/10.1002/jbm.b.34925
52. Golba B, Benetti EM, De Geest BG. Biomaterials Applications of Cyclic Polymers. Biomaterials. 2021;267:120468. https://doi.org/10.1016/j.biomaterials.2020.120468
53. Wang Y, Wang Z, Dong Y. Collagen-Based Biomaterials for Tissue Engineering. ACS Biomater Sci Eng. 2023;9(3):1132–1150. https://doi.org/10.1021/acsbiomaterials.2c00730
54. Xiao M, Tang Q, Zeng S, et al. Emerging Biomaterials for Tumor Immunotherapy. Biomater Res. 2023;27(1):47. https://doi.org/10.1186/s40824-023-00369-8
55. Mullin JA, Rahmani E, Kiick KL, et al. Growth Factors and Growth Factor Gene Therapies for Treating Chronic Wounds. Bioeng Transl Med. 2023;9(3):e10642. https://doi.org/10.1002/btm2.10642
56. Sahan OB, Gunel-Ozcan A. Hepatocyte Growth Factor and Insulin-like Growth Factor-1 based Cellular Therapies for Oxidative Stress Injury. Curr Stem Cell Res Ther. 2021;16(7):771–791. https://doi.org/10.2174/1574888X16999201124153753
57. Wang EA, Chen WY, Wong CH. Multiple Growth Factor Targeting by Engineered Insulin-like Growth Factor Binding Protein-3 Augments EGF Receptor Tyrosine Kinase Inhibitor Efficacy. Sci Rep. 2020;10(1):2735. https://doi.org/10.1038/s41598-020-59466-6
58. Shi A, Li J, Qiu X, et al. TGF-β Loaded Exosome Enhances Ischemic Wound Healing In Vitro and In Vivo. Theranostics. 2021;11(13):6616–6631. https://doi.org/10.7150/thno.57701
59. Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting Technologies in Tissue Engineering. Adv Biochem Eng Biotechnol. 2020;171:279–319. https://doi.org/10.1007/10_2019_108
60. He J, Zhang X, Xia X, et al. Organoid Technology for Tissue Engineering. J Mol Cell Biol. 2020;12(8):569–579. https://doi.org/10.1093/jmcb/mjaa012
61. Luo W, Zhang H, Wan R, et al. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater. 2024;13(18):e2304196. https://doi.org/10.1002/adhm.202304196
62. Iwaki R, Shoji T, Matsuzaki Y, et al. Current Status of Developing Tissue Engineering Vascular Technologies. Expert Opin Biol Ther. 2022;22(3):433–440. https://doi.org/10.1080/14712598.2021.1960976
63. Eck BL, Yim M, Hamilton JI, et al. Cardiac Magnetic Resonance Fingerprinting: Potential Clinical Applications. Curr Cardiol Rep. 2023;25(3):119–131. https://doi.org/10.1007/s11886-022-01836-9
64. Zhang YL, Wang C, Yuan XQ, et al. Multifunctional Xyloglucan-Containing Electrospun Nanofibrous Dressings for Accelerating Infected Wound Healing. Int J Biol Macromol. 2023;247:125504. https://doi.org/10.1016/j.ijbiomac.2023.125504