ARTICLE

Volume 10,Issue 1

Fall 2025

Cite this article
21
Citations
85
Views
28 June 2024

Research Progress of Cyclophilin A in Pulmonary Infectious Diseases

Juan Chen1 Wang Deng1*
Show Less
1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
© 2024 by the Author(s). Licensee Whioce Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cyclophilin A (CyPA) is an immunophilin with peptidyl-prolyl cis-trans isomerase (PPIase) activity, widely expressed in various tissues and organs, including the lungs. Under inflammatory responses or external cytokine stimulation, CyPA is secreted extracellularly and binds to receptors such as CD147, activating signaling pathways like ERK/NF-κB. This promotes inflammatory cell chemotaxis and cytokine release, playing a role in the pathophysiological processes of various inflammatory diseases. The expression level of CyPA is positively correlated with the severity of inflammation in pulmonary diseases such as chronic airway inflammation, acute respiratory distress syndrome (ARDS), and COVID-19 pneumonia. Targeting CyPA has been shown to reduce inflammation and improve prognosis. This article reviews the research progress of CyPA in common pulmonary infectious diseases, providing insights into its mechanism of action in such conditions.

Keywords
Cyclophilin A
Chronic airway inflammation
Acute respiratory distress syndrome
Viral pneumonia
References

1. Handschumacher RE, Harding MW, Rice J, et al., 1984, Cyclophilin: A Specific Cytosolic Binding Protein for Cyclosporin A. Science, 226(4674): 544–547. https://doi.org/10.1126/science.6238408
2. Fischer G, Wittmann-Liebold B, Lang K, et al., 1989, Cyclophilin and Peptidyl-Prolyl Cis-Trans Isomerase are Probably Identical Proteins. Nature, 337(6206): 476–478. https://doi.org/10.1038/337476a0
3. Kurosawa R, Satoh K, Nakata T, et al., 2021, Identification of Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A). Arterioscler Thromb Vasc Biol, 41(3): 1205–1217. https://doi.org/10.1161/ATVBAHA.120.315731
4. Alvariño R, Alfonso A, Pérez-Fuentes N, et al., 2022, Extracellular Cyclophilins A and C Induce Dysfunction of Pancreatic Microendothelial Cells. Front Physiol, 13: 980232. https://doi.org/10.3389/fphys.2022.980232
5. Hadpech S, Thongboonkerd V, 2022, Current Update on Theranostic Roles of Cyclophilin A in Kidney Diseases. Theranostics, 12(9): 4067–4080. https://doi.org/10.7150/thno.72948
6. Montagne A, Nikolakopoulou AM, Huuskonen MT, et al., 2021, APOE4 Accelerates Advanced-Stage Vascular and Neurodegenerative Disorder in Old Alzheimer’s Mice via Cyclophilin A Independently of Amyloid-β. Nat Aging, 1(6): 506–520. https://doi.org/10.1038/s43587-021-00073-z. Erratum in Nat Aging, 1(7): 624. https://doi.org/10.1038/s43587-021-00090-y
7. Liao Y, Luo D, Peng K, et al., 2021, Cyclophilin A: A Key Player for Etiological Agent Infection. Appl Microbiol Biotechnol, 105(4): 1365–1377. https://doi.org/10.1007/s00253-021-11115-2
8. Gegunde S, Alfonso A, Cifuentes JM, et al., 2023, Cyclophilins Modify Their Profile Depending on the Organ or Tissue in a Murine Inflammatory Model. Int Immunopharmacol, 120: 110351. https://doi.org/10.1016/j.intimp.2023.110351
9. Yu S, Li J, Yang T, et al., 2022, Expression of CypA/CD147 and MMP-2 in CD68+ Cells of Human Gingival Tissues with Chronic Periodontitis. Chin J Pathophysiol, 38(11): 2055–2062.
10. Satoh K, Satoh T, Kikuchi N, et al., 2014, Basigin Mediates Pulmonary Hypertension by Promoting Inflammation and Vascular Smooth Muscle Cell Proliferation. Circ Res, 115(8): 738–750. https://doi.org/10.1161/CIRCRESAHA.115.304563
11. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators, 2018, Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159): 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7. Erratum in Lancet, 393(10190): e44. https://doi.org/10.1016/S0140-6736(19)31047-5
12. Cavallazzi R, Ramirez JA, 2022, How and When to Manage Respiratory Infections Out of Hospital. Eur Respir Rev, 31(166): 220092. https://doi.org/10.1183/16000617.0092-2022
13. Favretto F, Flores D, Baker JD, et al., 2020, Catalysis of Proline Isomerization and Molecular Chaperone Activity in a Tug-of-War. Nat Commun, 11(1): 6046. https://doi.org/10.1038/s41467-020-19844-0
14. Dawar FU, Xiong Y, Khattak MNK, et al., 2017, Potential Role of Cyclophilin A in Regulating Cytokine Secretion. J Leukoc Biol, 102(4): 989–992. https://doi.org/10.1189/jlb.3RU0317-090RR
15. Chiu PF, Su SL, Tsai CC, et al., 2018, Cyclophilin A and CD147 Associate with Progression of Diabetic Nephropathy. Free Radic Res, 52(11–12): 1456–1463. https://doi.org/10.1080/10715762.2018.1523545
16. Sakamoto M, Miyagaki T, Kamijo H, et al., 2021, CD147-Cyclophilin A Interactions Promote Proliferation and Survival of Cutaneous T-Cell Lymphoma. Int J Mol Sci, 22(15): 7889. https://doi.org/10.3390/ijms22157889
17. Ji KY, Kim SM, Yee SM, et al., 2021, Cyclophilin A is an Endogenous Ligand for the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2). FASEB J, 35(4): e21479. https://doi.org/10.1096/fj.202002325RR
18. Dhanda AS, Warren KE, Chiu RH, et al., 2018, Cyclophilin A Controls Salmonella Internalization Levels and is Present at E. coli Actin-Rich Pedestals. Anat Rec (Hoboken), 301(12): 2086–2094. https://doi.org/10.1002/ar.23957
19. Zhai D, Fu Z, Jia J, et al., 2017, Cyclophilin A Aggravates Collagen-Induced Arthritis via Promoting Classically Activated Macrophages. Inflammation, 40(5): 1761–1772. https://doi.org/10.1007/s10753-017-0619-0
20. Deng X, Dai P, Yu M, et al., 2018, Cyclophilin A is the Potential Receptor of the Mycoplasma genitalium Adhesion Protein. Int J Med Microbiol, 308(3): 405–412. https://doi.org/10.1016/j.ijmm.2018.03.001
21. Li L, Luo D, Liao Y, et al., 2020, Mycoplasma genitalium Protein of Adhesion Induces Inflammatory Cytokines via Cyclophilin A-CD147 Activating the ERK-NF-κB Pathway in Human Urothelial Cells. Front Immunol, 11: 2052. https://doi.org/10.3389/fimmu.2020.02052
22. Reddy SP, Rasmussen WG, Baseman JB, 1996, Correlations between Mycoplasma pneumoniae Sensitivity to Cyclosporin A and Cyclophilin-Mediated Regulation of Mycoplasma Cytadherence. Microb Pathog, 20(3): 155–169. https://doi.org/10.1006/mpat.1996.0014
23. Luan X, Yang W, Bai X, et al., 2021, Cyclophilin A is a Key Positive and Negative Feedback Regulator Within Interleukin-6 Trans-Signaling Pathway. FASEB J, 35(11): e21958. https://doi.org/10.1096/fj.202101044RRR
24. Yang W, Bai X, Luan X, et al., 2022, Delicate Regulation of IL-1β-Mediated Inflammation by Cyclophilin A. Cell Rep, 38(11): 110513. https://doi.org/10.1016/j.celrep.2022.110513. Erratum in Cell Rep, 40(12): 111421. https://doi.org/10.1016/j.celrep.2022.111421
25. Chung KF, Dixey P, Abubakar-Waziri H, et al., 2022, Characteristics, Phenotypes, Mechanisms and Management of Severe Asthma. Chin Med J (Engl), 135(10): 1141–1155. https://doi.org/10.1097/CM9.0000000000001990
26. Stemmy EJ, Balsley MA, Jurjus RA, et al., 2011, Blocking Cyclophilins in the Chronic Phase of Asthma Reduces the Persistence of Leukocytes and Disease Reactivation. Am J Respir Cell Mol Biol, 45(5): 991–998. https://doi.org/10.1165/rcmb.2011-0007OC
27. Chen CT, Shan CX, Ran J, et al., 2021, Cyclophilin A Plays Potential Roles in a Rat Model of Asthma and Suppression of Immune Response. J Asthma Allergy, 14: 471–480. https://doi.org/10.2147/JAA.S308938
28. Schwartzberg PL, Finkelstein LD, Readinger JA, 2005, TEC-Family Kinases: Regulators of T-Helper-Cell Differentiation. Nat Rev Immunol, 5(4): 284–295. https://doi.org/10.1038/nri1591
29. Michaeloudes C, Abubakar-Waziri H, Lakhdar R, et al., 2022, Molecular Mechanisms of Oxidative Stress in Asthma. Mol Aspects Med, 85: 101026. https://doi.org/10.1016/j.mam.2021.101026
30. Cheng F, Yuan W, Cao M, et al., 2019, Cyclophilin A Protects Cardiomyocytes against Hypoxia/Reoxygenation-Induced Apoptosis via the AKT/Nox2 Pathway. Oxid Med Cell Longev, 2019: 2717986. https://doi.org/10.1155/2019/2717986
31. Christenson SA, Smith BM, Bafadhel M, et al., 2022, Chronic Obstructive Pulmonary Disease. Lancet, 399(10342): 2227–2242. https://doi.org/10.1016/S0140-6736(22)00470-6
32. Liao W, Xu Y, Hu F, et al., 2023, Distribution of Pathogens Isolated from chronic Obstructive Pulmonary Disease Patients with Pulmonary Infection Expressions of CyPA TLR in Peripheral Blood. Chin J Nosocomiol, 33(5): 693–697.
33. Zhang M, Tang J, Yin J, et al., 2018, The Clinical Implication of Serum Cyclophilin A in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis, 13: 357–363. https://doi.org/10.2147/COPD.S152898
34. Bos LDJ, Ware LB, 2022, Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes. Lancet, 400(10358): 1145–1156. https://doi.org/10.1016/S0140-6736(22)01485-4
35. Koh MW, Baldi RF, Soni S, et al., 2021, Secreted Extracellular Cyclophilin A Is a Novel Mediator of Ventilator-induced Lung Injury. Am J Respir Crit Care Med, 204(4): 421–430. https://doi.org/10.1164/rccm.202009-3545OC
36. Jiang J, Yin H, Sun Y, et al., 2018, Clonorchis sinensis Cyclophilin A Immunization Protected Mice from CLP-Induced Sepsis. Int Immunopharmacol, 59: 347–353. https://doi.org/10.1016/j.intimp.2018.03.039
37. Song T, Yang M, Chen J, et al., 2015, Prognosis of Sepsis Induced by Cecal Ligation and Puncture in Mice Improved by Anti-Clonorchis sinensis Cyclopholin A Antibodies. Parasit Vectors, 8: 502. https://doi.org/10.1186/s13071-015-1111-z
38. Witzenrath M, Kuebler WM, 2021, The CypA-Netics of Ventilator-Induced Lung Injury. Am J Respir Crit Care Med, 204(4): 385–387. https://doi.org/10.1164/rccm.202104-0919ED
39. Hu B, Guo H, Zhou P, et al., 2021, Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 19(3): 141–154. https://doi.org/10.1038/s41579-020-00459-7. Erratum in Nat Rev Microbiol, 20(5): 315. https://doi.org/10.1038/s41579-022-00711-2
40. Parkinson N, Rodgers N, Head Fourman M, et al., 2020, Dynamic Data-Driven Meta-Analysis for Prioritisation of Host Genes Implicated in COVID-19. Sci Rep, 10(1): 22303. https://doi.org/10.1038/s41598-020-79033-3
41. Geng J, Chen L, Yuan Y, et al., 2021, CD147 Antibody Specifically and Effectively Inhibits Infection and Cytokine Storm of SARS-CoV-2 and Its Variants Delta, Alpha, Beta, and Gamma. Signal Transduct Target Ther, 6(1): 347. https://doi.org/10.1038/s41392-021-00760-8
42. Bian H, Chen L, Zheng ZH, et al., 2023, Meplazumab in Hospitalized Adults with Severe COVID-19 (DEFLECT): A Multicenter, Seamless Phase 2/3, Randomized, Third-Party Double-Blind Clinical Trial. Signal Transduct Target Ther, 8(1): 46. https://doi.org/10.1038/s41392-023-01323-9
43. Wang K, Chen W, Zhang Z, et al., 2020, CD147-Spike Protein is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduct Target Ther, 5(1): 283. https://doi.org/10.1038/s41392-020-00426-x
44. Fenizia C, Galbiati S, Vanetti C, et al., 2021, SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2. Cells, 10(6): 1434. https://doi.org/10.3390/cells10061434
45. Liu W, Li J, Zheng W, et al., 2017, Cyclophilin A-Regulated Ubiquitination is Critical for RIG-I-Mediated Antiviral Immune Responses. Elife, 6: e24425. https://doi.org/10.7554/eLife.24425
46. Bai X, Yang W, Luan X, et al., 2021, Induction of Cyclophilin A by Influenza A Virus Infection Facilitates Group A Streptococcus Coinfection. Cell Rep, 35(7): 109159. https://doi.org/10.1016/j.celrep.2021.109159
47. Bai X, Yang W, Li H, et al., 2022, Cyclosporine A Regulates Influenza A Virus-induced Macrophages Polarization and Inflammatory Responses by Targeting Cyclophilin A. Front Immunol, 13: 861292. https://doi.org/10.3389/fimmu.2022.861292
48. Mahesutihan M, Zheng W, Cui L, et al., 2018, CypA Regulates AIP4-Mediated M1 Ubiquitination of Influenza A Virus. Virol Sin, 33(5): 440–448. https://doi.org/10.1007/s12250-018-0058-6
49. Li H, Yang W, Li H, et al., 2023, PROTAC Targeting Cyclophilin A Controls Virus-Induced Cytokine Storm. iScience, 26(9): 107535. https://doi.org/10.1016/j.isci.2023.107535
50. Sekhon SS, Shin WR, Kim SY, et al., 2023, Cyclophilin A-Mediated Mitigation of Coronavirus SARS-CoV-2. Bioeng Transl Med, 8(2): e10436. https://doi.org/10.1002/btm2.10436
51. Dittmar M, Lee JS, Whig K, et al., 2021, Drug Repurposing Screens Reveal Cell-Type-Specific Entry Pathways and FDA-Approved Drugs Active Against SARS-Cov-2. Cell Rep, 35(1): 108959. https://doi.org/10.1016/j.celrep.2021.108959
52. Liang W, Zhang Y, Li M, et al., 2021, Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol, 95(15): e0056321. https://doi.org/10.1128/JVI.00563-21


Conflict of interest
The author declares no conflict of interest.
Share
Back to top