ARTICLE

Volume 10,Issue 1

Fall 2025

Cite this article
26
Citations
56
Views
25 July 2023

Naringin Attenuates CCl4-Induced Hepatocyte  Damage by Inhibiting Endoplasmic Reticulum Stress

Umut Kerem Kolaç1*
Show Less
1 Department of Medical Biology, Aydın Adnan Menderes University, Faculty of Medicine, Aydın 09010, Türkiye
© 2023 by the Author(s). Licensee Whioce Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Objective: Exposure of the liver to diverse chemicals induce hepatic  damage. Carbon tetrachloride (CCl4) is widely used toxin to  investigate hepatic injury. In our study, the effects of naringin (NRG),  a flavanone abundant in citrus fruits, on endoplasmic reticulum  (ER) stress and stress-mediated apoptosis in CCl4-induced liver  injury were investigated. Materials and methods: THLE-3 cells  were exposed to varying concentrations of CCl4 for 24 hours and  then treated with different doses of NRG for 4 hours. The effects of  varying concentrations on cell viability were determined. Then, protein  expressions of ER stress markers were detected in hepatocytes. Finally,  Bcl2 active / inactive cell ratios were determined by flow cytometry. Results: NRG treatment (5 and 10 μM) significantly increased cell  viability, which decreased with CCl4 administration. Similarly, the  increased levels of ER stress markers as a result of CCl4 application  were significantly reduced with NRG treatment. Finally, NRG  prevented apoptosis by significantly reducing ratio of Bcl2 inactive  cells. Conclusion: NRG treatment is effective in suppressing ER stress  in CCl4-induced hepatocyte damage and preventing ER stress-induced  apoptosis.

Keywords
Liver damage
Naringin
Endoplasmic reticulum stress
Apoptosis
References

1. Novo E, Cannito S, Paternostro C, et al., 2014. Cellular and Molecular Mechanisms in Liver Fibrogenesis. Arch Biochem Biophys, 548: 20–37. http://doi.org/10.1016/j.abb.2014.02.015.
2. Tuñón MJ, Miguel BS, Crespo I, et al., 2011, Melatonin Attenuates Apoptotic Liver Damage in Fulminant Hepatic Failure Induced by the Rabbit Hemorrhagic Disease Virus. J Pineal Res, 50(1): 38–45. http://doi.org/10.1111/j.1600-079X.2010.00807.x.
3. Auzinger G, Wendon J, 2008, Intensive Care Management of Acute Liver Failure. Current Opinion in Critical Care, 14(2):179–188. http://doi.org/10.1097/MCC.0b013e3282f6a450.
4. Yen F-L, Wu T-H, Lin L-T, et al., 2009, Naringenin-loaded Nanoparticles Improve the Physicochemical Properties and the Hepatoprotective Effects of Naringenin in Orally-administered Rats with CCl4-induced Acute Liver Failure. Pharm Res, 26(4): 893–902. http://doi.org/10.1007/s11095-008-9791-0.
5. Malhi H, Kaufman RJ, 2011, Endoplasmic Reticulum Stress in Liver Disease. J Hepatol, 54(4): 795–809. http://doi.org/10.1016/j.jhep.2010.11.005.
6. Lin L, Que R, Shen Y, et al., 2018, Saikosaponin‑d Alleviates Carbon‑tetrachloride Induced Acute Hepatocellular Injury by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation in the HL‑7702 Cell Line. Mol Med Rep, 17(6): 7939–7946. http://doi.org/10.3892/mmr.2018.8849.
7. San‐Miguel B, Crespo I, Sánchez DI, et al., 2015, Melatonin Inhibits Autophagy and Endoplasmic Reticulum Stress in Mice with Carbon Tetrachloride‐induced Fibrosis. J Pineal Res, 59(2): 151–162. http://doi.org/ 10.1111/jpi.12247.
8. Hotamisligil GS, 2010, Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell, 140(6): 900–917. http://doi.org/10.1016/j.cell.2010.02.034.
9. Chen Q, Wu H, Tao J, et al., 2017, Effect of Naringin on gp120-induced Injury Mediated by P2X7 Receptors in Rat Primary Cultured Microglia. PLoS One, 12(8): e0183688. http://doi.org/10.1371/journal.pone.0183688.
10. El-Desoky AH, Abdel-Rahman RF, Ahmed OK, et al., 2018, Anti-inflammatory and Antioxidant Activities of Naringin Isolated from Carissa carandas L.: In vitro and in vivo evidence. Phytomedicine, 42: 126–134. http://10.1016/j.phymed.2018.03.051.
11. Shirani K, Yousefsani BS, Shirani M, et al., 2020, Protective Effects of Naringin Against Drugs and Chemical Toxins Induced Hepatotoxicity: A Review. Phytotherapy Research, 34(8): 1734–1744. http://doi.org/10.1002/ptr.6641.
12. Liu Y, Wu H, Nie Y-C, et al., 2011, Naringin Attenuates Acute Lung Injury in LPS-treated Mice by Inhibiting NF-κB Pathway. Int Immunopharmacol, 11(10): 1606–1612. http://doi.org/10.1016/j.intimp.2011.05.022.
13. Suzuki T, Motohashi H, Yamamoto M, 2013, Toward Clinical Application of the Keap1–Nrf2 Pathway. Trends Pharmacol Sci, 34(6): 340–346. http://doi.org/10.1016/j.tips.2013.04.005.
14. Dong D, Xu L, Yin L, et al., 2015, Naringin Prevents Carbon Tetrachloride-induced Acute Liver Injury in Mice. Journal of Functional Foods, 12: 179–191. http://doi.org/10.1016/j.jff.2014.11.020.
15. Lu Q, Yang L, Zhao H-Y, et al., 2013, Protective Effect of Compounds from the Flowers of Citrus aurantium L. var. amara Engl Against Carbon Tetrachloride-induced Hepatocyte Injury. Food and Chemical Toxicology, 62: 432–435. http://doi.org/10.1016/j.fct.2013.08.041.
16. Kim H-J, Song JY, Park HJ, et al., 2009, Naringin Protects Against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells. The Korean J Physiol Pharmacol, 13(4): 281–285. http://doi.org/10.4196/kjpp.2009.13.4.281.
17. Stanca CM, Babar J, Singal V, et al., 2008, Pathogenic Role of Environmental Toxins in Immune-mediated Liver Diseases. J Immunotoxicol, 5(1): 59–68. http://doi.org/10.1080/15476910802019086.
18. Adams L, Angulo P, 2006, Treatment of Non-alcoholic Fatty Liver Disease. Postgrad Med J, 82(967): 315–322. http://doi.org/10.1136/pgmj.2005.042200.
19. Ustuner D, Kolac UK, Ustuner MC, et al., 2020, Naringenin Ameliorate Carbon Tetrachloride-Induced Hepatic Damage Through Inhibition of Endoplasmic Reticulum Stress and Autophagy in Rats. J Med Food, 23(11): 1192–1200. http://doi.org/10.1089/jmf.2019.0265.
20. Kim H-R, Lee G-H, Cho EY, et al., 2009, Bax Inhibitor 1 Regulates ER-stress-induced ROS Accumulation through the Regulation of Cytochrome P450 2E1. J Cell Sci, 122(8): 1126–1133. http://doi.org/10.1242/jcs.038430.
21. Wong FW, Chan WY, Lee SS, 1998, Resistance to Carbon Tetrachloride-induced Hepatotoxicity in Mice which Lack CYP2E1 Expression. Toxicol Appl Pharmacol, 153(1): 109–118. http://doi.org/10.1006/taap.1998.8547.
22. Lee G-H, Bhandary B, Lee E-M, et al., 2011, The Roles of ER Stress and P450 2E1 in CCl4-Induced Steatosis. Int J Biochem Cell Biol, 43(10): 1469–1482.
23. Kisseleva T, Brenner DA, 2007, Role of Hepatic Stellate Cells in Fibrogenesis and the Reversal of Fibrosis. Journal of Gastroenterology and Hepatology. 22: S73-S8. http://doi.org/10.1016/j.biocel.2011.06.010.
24. Atzori L, Poli G, Perra A, 2009, Hepatic Stellate cell: A Star Cell in the Liver. Int J Biochem Cell Biol, 41(8-9): 1639–1642. http://doi.org/10.1016/j.biocel.2009.03.001.
25. Bravo R, Parra V, Gatica D, et al., 2013, Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration. Int Rev Cell Mol Biol, 301: 215–290. http://doi.org/10.1016/B978-0-12-407704-1.00005-1.
26. Marumoto Y, Terai S, Urata Y, et al., 2008, Continuous High Expression of XBP1 and GRP78 is Important for the Survival of Bone Marrow Cells in CCl4-treated Cirrhotic Liver. Biochem Biophys Res Commun, 367(3): 546–552. http://doi.org/10.1016/j.bbrc.2007.12.171.
27. Üstüner M, Tanrikut C, Üstüner D, et al., 2021, The Effect of Baicalein on Endoplasmic Reticulum Stress and Autophagy on Liver Damage. Hum Exp Toxicol, 40(10): 1624–1633. http://doi.org/10.1177/09603271211003634.
28. Mukherjee PK, 2002, Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals, Business Horizons, New Delhi.
29. Meng X, Tang G-Y, Liu P-H, et al., 2020, Antioxidant Activity and Hepatoprotective Effect of 10 Medicinal Herbs on CCl4-induced Liver Injury in Mice. World J Gastroenterol, 26(37): 5629–5645. http://doi.org/10.3748/wjg.v26.i37.5629.
30. Chen L, Teng H, Zhang KY, et al., 2017, Agrimonolide and Desmethylagrimonolide Induced HO-1 Expression in HepG2 Cells through Nrf2-transduction and p38 Inactivation. Front Pharmacol, 7: 513. http://doi.org/10.3389/fphar.2016.00513.
31. Hu H, Tian M, Ding C, et al., 2019, The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-induced Apoptosis and Microbial Infection. Front Immunol, 9: 3083. http://doi.org/10.3389/fimmu.2018.03083.
32. Hetz C, 2012, The Unfolded Protein Response: Controlling Cell Fate Decisions under ER Stress and Beyond. Nat Rev Mol Cell Biol, 13(2): 89–102. http://doi.org/10.1038/nrm3270.
33. Iurlaro R, Muñoz‐Pinedo C, 2016, Cell Death Induced by Endoplasmic Reticulum Stress. FEBS Journal, 283(14): 2640–2652. http://doi.org/10.1111/febs.13598.

Conflict of interest
The author declares no conflict of interest.
Share
Back to top